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-I.

THE CANTED SPECTRAL TRANSFORM
AND ITS PROPERTIES

INTRODUCTION

Spectral transforms play a major role in modern signal processing and analysis. This role will
undoubtedly be expanded in the future as a consequence of advances in microelectronics and computer
technologies. The most common spectral transform used in practice is the discrete sectionalized
Fourier transform (SFT) which evolved with the advent of the fast Fourier transform (FFT) algorithm
of Cooley and Tukey [1,21. The FFT algorithm opened the door to high-speed coherence estimation in
low-frequency (acoustic) applications through its use as an SFT [3-61. In application, the SFT accumu-
lates a signal energy along narrow spectrally invariant channels (or frequency bins) over the temporal
limits of the transform integration interval. This restriction on signal-spectral dynamics is imposed by
the Fourier kernel, exp {-i27rft). One may therefore surmise that this restriction is rather arbitrary,
and that one may accumulate signal energy along any dynamic spectral path by choosing a suitable ker-
nel function to use in the transform. Suppose, for example, that one chooses a kernel, exp (-it(t)),
where

N- ri
IP(t) = 2T Jr I ,,tn+l = 2,7r | 710 t + t77 t2 + * * * + No- I tN ]*(a)

n-0

The transform of a signal using I (t) as a kernel will accumulate energy over dynamic spectral paths

f W 1 = (n + 1 -On .b)
n-=0

Here (t) is the time derivative of the generalized phase function (t). It should be evident, there-
fore, that for a narrowband signal s (t) A sin 0 (t) whose instantaneous frequency satisfies

t = Y ) , (2a)

over 0 < t ( T, the magnitude square of its spectral transform reduces to

1 If s(t)e'iwt(t)dt | =,f0 s2(t)d, (2b)

for

71n = Aft) (0)/ (n + 1) !(2c)

With foreknowledge of the spectral dynamics of a given signal, the kernel parameters -On of the general-
ized transform may be chosen to provide an effective matched filter for the signal. Without this fore-
knowledge, the kernel parameters may be varied to search for the set that maximizes the transform
output; thus providing an estimate of the detected signal spectral dynamics.

Manuscript approved July 14, 1986.
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GERLACH, FLOWERS, ANDERSON, AND KUNZ

Although sound in principle, the generalized spectral transform becomes increasingly computa-
tionally intensive as the order of the phase polynomial becomes large. However, extending the phase
kernel from linear to quadratic is a reasonable step to further the cause of the generalized concept in
spectral transforms.

The utility of the quadratic phase kernel has recently received some degree of recognition. Wol-
cin [71 has demonstrated that when the spectral trajectory of a signal can be adequately.modeled by a
continuous, piecewise linear function of time, the maximum a posteriori estimate of the narrowband
signal (not surprisingly) results in exponential quadratic phase functions. George Rogers, at TRW,
Inc., subsequently determined that the use of the quadratic phase kernel in place of the conventional
linear Fourier kernel could significantly improve the detection of particular classes of spectral dynamic
signals propagating in the ocean medium [8]. The objective of this report is to study the properties of
the spectral transform that employs the quadratic phase kernel, in a preliminary effort to determine its
utility in practical applications. This form of the spectral transform will be called the canted spectral
transform (CST); in that it accumulates signal energy along spectral paths that may be canted (or
linearly sloping) with respect to time. The discrete form of the transform using the combined Fourier-
Fresnel kernel is also referred to (by Rogers) as the slide-fast Fourier transform or S-FFT.

FORMULATION OF THE CST

The discrete form of the CST to be studied in this report is*

1 N-i ,,,,e N F (k,v) 0 = - n (3)
n=O

where
sj are the signal samples over the interval no0 i < no+ N- 1,
k = 0,1,2,3, ... ,N- 1 is the frequency index,

=0+1 ±, 2, + 3, ... ,Vmax is the cant (or frequency-slide) index,
n is the time index (or sample number) relative to no,
no is the initial time index,
wn = WN-n is the window function over 0 < n K N-1,

and

N-I
W= I w, is the windowed signal-averaging factor.

n=O

The signal s (t) is assumed to be uniformly sampled over time increments At. The transform-
integration time T is therefore NAt. The bin width of the spectral channels is 1/T, centered at
f = ki T. The frequency slide, f = Af/ T = Ak! T2, of the spectral channels is v/ T2. The cant v is the
integer number Ak of frequency bins shifted over the transform-integration time T. The factor W is
equal to N for the conventional rectangular window and equals N/2 for the Hanning window. The
spectral channel width 1/T is generally chosen to encompass the short-term bandwidth of the nar-
rowband signal components of interest. And the range of the cant variable is chosen to encompass the
anticipated frequency shift of the signal components over the transform-integration time. As a conse-
quence, the class of narrowband signals most suitable for analysis by the CST is that whose member's
instantaneous frequency deviates from linear over time T no greater than approximately 1/ T.

*Although the discrete CST would be complex and not include the absolute value signs, it is convenient to consider only the
magnitude of the transform in this early study of its general properties.

2



NRL REPORT 9007

THE CHARACTERISTIC FUNCTION Z(x,y)

Since the CST is structured to accumulate signal energy along canted or sloping channels in the
frequency-time plane, let s(t) be a signal whose instantaneous frequency varies linearly with time.
That is, let

i 12rko , + |rv |.1 + O|
nn e (4)

where

ko= foT

fo is the instantaneous frequency of s (t) at to = noA t

vo - 7'2

Jo is the time derivative of the instantaneous frequency at to

and

00 is a constant phase term.

In this event, from Eqs. (3) and (4), the CST becomes

F~~k, ~ ~ N-i 42(k -kol .n + [v - vo I nJ12
IF (k, ) w, eNI|1 S nIN 

n=o

Letting x = k - ko and y = v - vo defines the characteristic function of the CST as

1 N-E I2x + I N I
Z(x,Y) =-j I wneiv N N

Wn=o

(5)

(6)

The CST characteristic function Z (x,y) is a quasi-continuous function of the variables x and y (since
ko and v0 need not be integers), and it serves to demonstrate some of the properties of the CST.

Symmetry Relations

Replacing x by -x and y by -y in Eq. (6) gives the symmetrical relationship

Z(-x,-y) = Z(x,y) . (7a)

The above symmetry implies that paired values k, k' and v, v' (corresponding to pairs x, -x and y, -y
respectively) must satisfy the relations

k = (k+k')12= ko, (7 b)

and

v = (v + v')/ 2 = vo. (7c)

Consequently, ko and vo must be integer multiples of 1/2 since k, k', v, and v' are integers. The
geometric interpretation is that k and k' are spectral bins symmetrically located about ko with cants v

3
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and v 'such that the resulting spectral trajectories intersect the spectral trajectory of the signal ko, o0 at a
common point.

Note from Eq. (5) that the CST is dependent on only the differences k - ko and v - vO. Thus one
can determine the canted transform of any linear frequency-slide signal (including the cw signal) by
computing the conventional Fourier transform of a canted signal whose parameters are ko and v0 - P.
This is apparent from the form of the CST in Eq. (3), which can be interpreted as the conventional
Fourier transform of a signal modified by the phase kernel, exp t-i7rvn 2 N2 ).

Letting n go to N- n in Eq. (6), and using the identity WN,_ = wn, the CST characteristic func-
tion becomes

| | < ~~n , n 2l

Z(xy) =-| e N- 2(x+Y)- N _ W| 1-eifr(2x+y)1 (8a)
n-0

For typically large values of N, the second term is insignificant in comparison to the summed term and
can be ignored. Therefore,

Z(-x-y,y) = Z(x,y) = Z(x+y,-y) = Z(-x,-y). (8b)

Thus, the two values k and k'= 2ko+ vo- v - k (corresponding to x and -x-y) will give the same
value for the characteristic function. In geometric terms, given the values ko, v,, and v, any two
values of k whose arithmetic mean is

k = (k + k')/2 = ko + (vo-v)/2 (8c)

will give the same value for the characteristic function. Writing the above equation as

k+ v/2 = ko + vo/2 (8d)

reveals that the spectral trajectory originating at k with cant v intersects the trajectory originating at ko
with cant v0 at its midpoint. Consequently, the trajectories originating at k and k' will intersect the tra-
jectory of the relevant signal s (t) at points symmetrically distributed about its midpoint. Since k and v
are integers, it is necessary that 2ko+vo be an integer.

Translation of the Temporal Index

Translating the temporal index of the CST characteristic function by a gives the interesting result
that

N- hiT[2x N,-a N~-~JZ'(x,y; a) =- E e

1 N-i | (9a)

= Z(x-ay,y) .

Thus, translating the time index n by aN is equivalent to translating the x variable by ay. In particu-
lar,

4
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Z' (0, y;-x/y) = Z (x, y)

1 N-v i n + e

n=0

C.,
2!
r-
;01u

-1

(9b) a."
C.

Thus, one can compute the characteristic function using only the quadratic phase term by appropriate
translation of the time index.

A study of Eq. (9b) reveals that the range of phase excursion over n is minimized when
x = -y/2. The characteristic function for minimum phase excursion may be written as

Z(-y/2,y) = 1 N/2 [a I e I'
-2 1 WN/2+n, e N - I + woei rlrY/ I

2 N 2 _ I T [. 12

-Z= 2j; 7 WN/ 2 +n e N

TVn=0

To map the topology of the CST characteristic function over the x, y
given in Eq. (9b) may be used to give

Z(XY) = | IZR (XY) 12 + IZI(XY) 12 1/2,

where

plane, the functional form

(I Oa)

'IN-1 I1(1 X 21 
ZR (X,Y) = TV 7, w, COS |1rY | n x|y

n-0 w,) cos |I Ny| X

_ o w Q) COS [7TY(e+ . 121de,

Z (X Y) = 1 N-1

(lOb)

w% sin |XY n+ X 2

(1Oc)W N o Iw( ) sin [ry | + x | | di 

Although the above functions are undefined for y=O, the singularity is removable,
form of the conventional Fourier transform of the window function.

resulting in the

Rectangular Window

For a rectangular window function, a closed form of the solution is obtained involving the Fresnel
sine and cosine integrals S( .. ) and C( ) as follows:

ZR (X, Y) =
C (132+./31 ) - C (,31 )

/32
(I la)

5

Topology of Z(x,y)

(9c)
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S (= 2 +0 1 )-S (p1)
1y2 (lib)

where

l= Ix I and /32 = if (l Ic)

and where the sign of 13i is positive when x and y have the same sign and negative when their signs
differ. This result for a linear slide frequency was demonstrated in Ref. 6 and has also been derived
and demonstrated by Rogers [81 in his unpublished work on the slide-FFT. For x=0 or x=-y, the
characteristic function reduces to

Z(0,y) = Z(-yy)= S2 (132)+C2(12) (12a)
12

and for x=-y/2,

Z(-y/2,y) = .S0(1 2/2) C2(1 2/2) 2)
132/2 2b

Figure 1 shows graphical plots of the CST characteristic function for the rectangular window. To
achieve the realism of the CST, the topology is mapped over integer increments of x and y about initial
offsets of either 0 or 1/2.. As a visual aid, the discrete values along the x axis are connected by straight
lines. The offsets of 1/2 in either or both the x and y axis are intended to depict the effect of nonin-
teger values for the signal parameters ko and vo on the resulting topology. In the upper left-hand
diagram, the parameters ko and vo are both integers. Consequently, a peak value of 1 is achieved for
x=y=0. In the upper right-hand diagram, the parameter ko is depicted to be an odd multiple of 1/2.
That is, the initial frequency is depicted to start at the edge of a CST bin, while the cant vo remains an
integer. In the lower left-hand diagram, the parameter ko is an integer while the cant parameter v0 is
depicted to be an odd multiple of 1/2. In this situation, the cant can never be fully compensated by the
integer variable v. The lower right-hand diagram depicts the situation where both ko and v0 are odd
multiples of 1/2. In reality, the two scale offsets can fall anywhere between ± 1/2. In Fig. 1 only the
extreme offsets are depicted. The illustrations demonstrate the functional symmetry derived in the ear-
lier analysis.

Hanning Window

To study the effect of a shading window function on the CST, the popular Hanning window is
used. In this case the window function w, is sin2 (T n/N) and NI W 2. Unfortunately, a closed-
form solution is not available; however, by using Eq. (10), graphical plots of the characteristic function
were computed and are displayed in Fig. 2. The rationale for the four diagrams is identical to that
described for the case of the rectangular window function.

Cant Selectivity

A study of the characteristic function topology for the two window functions (Figs. 1 and 2)
reveals marked differences in the cant selectivity. In the case of the rectangular window (commonly
called the no window case since we = 1 over the integration interval), the peak of the contour is more
sharply defined. The variation of the contour over the x,y plane is, however, more erratic. At the
larger values of y, the spread of the peak along the x axis is relatively broad. On the other hand, the
topology of the characteristic function for the Hanning window is relatively smooth, and it displays a

6
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C-

r-.
e::

20

Fig. I - Topology of the CST characteristic function Z(x,y) for a rectangular window. The upper left-hand diagram
illustrates the case when ko and vo are integers. In the upper right-hand diagram, v0 is an integer but ko is an odd multiple
of 1/2; that is, ko occurs at a bin edge. The two peaks occur for y = v- v= ± 1. In the lower left-hand diagram, ko is an
integer but v0 is an odd multiple of 1/2; that is, P0 is midway between two cant values of P. The two central peaks are equal
and occur for y = v - = + 1/2. In the lower right-hand diagram, both ko and v0 are odd multiples of 1/2.

7
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20 Be= 
-23 x 0 I 3 x + 1/2

:~~~~~~

Fig. 2 -Topology of the CST characteristic function Z(x,y) for a Hanning window. The rationale and peak characteristics of

the four diagrams are the same as described in Fig. I. The topology for the shaded window is, however, more smooth. And,
the peak of the topology decays less rapidly (along the line of minimum phase excursion x=-y/2) as the absolute value of y

increases.
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more gradual falloff along the line y =-2x. For the purpose of estimating the cant of a linear
frequency-slide signal, the rectangular window would prove superior; particularly, in a noisy environ-
ment.

To obtain a quantitative measure of the cant selectivity, the peak value of the characteristic func-
tion over x was computed as a function of y for the two window functions. These values involve
offsets within + 1/2 about integer values of x and y. The results are plotted in Fig. 3 as a function of
integer values of the cant variable. The diagrams display the expected value (small circle) and the
range of variation of Z(x,y) due to the random offsets. The value of Z(x,y) at each y in Fig. 3 are
uniquely dependent on the specific offsets. Thus, the indicated variations along the abscissa are not
independent but are highly correlated. The results demonstrate the superiority of the rectangular win-
dow in resolving the cant of a narrowband signal in a noisy background environment.

-1- ~~RECTANGULAR WINDOW -i _jfI HANNING WINDOW

-2 1 -2 -

-3 - ~~~~~~~~-3-

-4 - 44 -01 41 82 01 41 82

000 -5 ~~~~~~~~~-5-
l. -6 -- 00N -7 - ~~~~~~~-7-
-8 -- 8-

-9 -9 

-10 -10-

-11 11

Ii12 -12
0 2 4 6 8 10 12 1'4 16 1'8 20 0 2 4 6 8 10 12 14 16 18 20

DIFFERENTIAL CANT I y±F 1/21 DIFFERENTIAL CANT I y± 1/21

I-i.3- Cant selectivity of the CST characteristic function Z(x~y) for the rectangular and Hanning windows. The
vertical lines depict the range of variation in CST output for ko and v0 uniformly distributed over ± 1/2 about given
integers. The specific values at points along the abscissa are not independent but perfectly correlated. That is, given
the values, for k0 and P0, the CST outputs are uniquely determined at the points along the abscissa and will fall
within the range indicated in the figure.

CST STATISTICS FOR A RANDOM NOISE SIGNAL

Let Fj (k, ) be the CST, given in Eq. (3), of a sample signal randomly selected from an ensemble
of zero-mean Gaussian functions with standard deviation a-. Define i as the specific value of v
whereby Fj (k, P) < Fj (k, i) for a given value of k. Therefore, Fj (k, v) and Fj (k, v) are samples of a
random function whose statistics are studied in the following paragraphs. For purposes of the study,
the CST size is assumed to be very large, much larger than the range over which the cant v is varied.

Distribution of Fj (k, v

For a Gaussian signal, it is known that Fj (k, o) is a Rayleigh-distributed random variable with
mean proportional to r/%7>o- and variance equal to 4/7r-I times the square of the mean. Computer
runs over a large set of Gaussian inputs have verified that Fj (k, v) is Rayleigh distributed and identical
for each k and v (as expected).

9
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Distribution of Fj (k, i)

To study the distribution of the peak CST for a Gaussian noise input let

Xj = Fj (k, vj), (13a)

where pi is selected from the set {v1. Consider the set XlX 2, - Xn and denote X= Fj(k,i) as a
member of the set; such that, Xj • X for j = 1, 2, .. ., n. Now, it has been shown that when the distri-
bution functions for the set of Xj are identical and independent, the distribution function for X is sim-
ply [9]

1X (Z) = [FX (Z) ]n 

where F (z) is the probability that X is less than z and F (z) is the probability that Xj is less than z for
a given vj. Since X is Rayleigh distributed,

Fx(z) = (Ip) n,
n

= I (-)j n C(p'i, (14a)
j=0

where nC, is the binomial coefficient and p is the complement Rayleigh distribution, exp I-z 2 /2o-2 1,
or the probability that z < X. The complement distribution function for X as a function of p is there-
fore

n
PX (p) = I ( 1)-I n Cj p',

J=I

= np n-i P + (n-1) (n-2) 2 | (14b)

Thus when p is less than 0.2/(n-1), the complement distribution function for X approximates np.

Curves of the idealized complement distribution function are shown in Fig. 4 for several values of
n. Since these curves are based on independent distribution functions for the set Xj, computer runs
were made to determine the difference between the actual and idealized complement distribution func-
tion for the same values of n. This proved to be a rather formidable task due to the large sample size
required to achieve accurate measures of the function. However, sufficient data were achieved to show
that the difference is quite small. In every case, the actual probability proved to be slightly less than
the data given in Fig. 4; particularly in the range of p between 10-l and 10-4. The results for n=41
(where the accuracy is higher than for the lower values of n) are shown in Fig. 5. The results for lower
values of n are comparable to those shown in the figure for values of p less than about 10-2. The
difference is that as n becomes smaller, the curves descend to about the same minimum values for
slightly higher values of p before merging in close proximity with the curves shown. As a conse-
quence, one will not err greatly in using the curves shown in Fig. 4.

Mean and Standard Deviation of F1 (k, i)

The probability density of X is simply the derivative of the distribution function (14a) or

f (Z) =nZ p (1-p)n- (15a)

where p is the complement Rayleigh distribution function. The various moments may be computed
from the probability density function. Carrying out the indicated operations givesX nI (-1)'X/x =n I - Cj 16

10
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1 5 2 10-1 5 2 10-2 5
PROBABILITY p

;X.

,,01

2 10-3 5 2 1g4

Fig. 4 - Complement distribution function of the CST peak output for
a random Gaussian signal as a function of the complement Rayleigh
distribution function, p. The curves assume the distribution functions
of the CST at each p are independent. At small values of p the curves
approximate np, where n is the total number of cant values in the
CST.

D~ $.0 - _ ._o---- 0
--w~ '°-v. D- 70 5 _'' 0.8 -

0.7 - - a 

0.3 

- 0.4- NUMBER OF CONTIGUOUS CANT VALUES, n = 41

0.Q3 - o RECTANGULAR WINDOW
0 HANNING WINDOW

a 0.- 197.000.000 SAMPLES)
0.1

I0-I 10-2 104 1D-4 10-5 104

PROBABILITY p

Fig. 5 - Experimentally determined deviations from the
complement distribution function shown in Fig. 4 as a result of
dependence between the cant values v; n=41. The deviation for
other values of n closely approximate those illustrated for p less
than about 10-2. As n gets smaller, however, the deviation
tends to decay and reach approximately the same minimum for
slightly larger values of p. It may be concluded that one will not
err significantly by using the curves shown in Fig. 4 for the
complement distribution function of the CST peak output.
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and

(rx/axJ| 4_T [4n 2 (j.l)2 "-lC. -7r (Xix)' J , (I5c)

where X and ax are the mean and standard deviation of the Rayleigh distributed CST statistic
Xj = Fj (k, vj).

Figure 6 is a plot of the above functions along with experimental measures obtained from the
CST by using a Gaussian noise signal. The experimental data reflect the dependence or covariance
between the Xj sample increments.

2A ' ' ' ' ' ' ' '

22 .2

p/ ,SOLID CURVES ARE THEORETICAL ASSUMING
/ THE xi SAMPLES ARE INDEPENDENT

4- OA DNSED CURVES ARE EXPERIMENTAL
o RECTANGULAR WINDOW

1.2 -/ 0 HANNING WINDOW

1.0 I I I I I I I I I
10 15 20 25 30 35 40 45

0.6
0 5 10 15 20 25 30 35 40 45 50

NUMBER OF CONTIGUOUS CANT VALUES IN CST. n

Fig. 6 - Mean and standard deviation of the peak CST
output for a random Gaussian signal as a function of n,
relative to the values for n=I. The theoretical curves
assume independence between the cant values, while the
dashed curves were obtained experimentally by averaging
about 250,000 samples per point. Deviation from the
theoretical curves is attributable to the dependence
between cant values.

Characteristics of the Variable i

Experimental measures were made to determine the distribution of the statistic v for a random
Gaussian signal. This variable is the member of the set {v} that maximizes the CST for a given input
signal sample. The observed distribution of v is uniform over the range of cants except at the two end
points where the probability is higher than the mean. This implies that the covariance between the cant
parameters are nonzero. In this event, maximum CST values, which would occur for v values outside
of the range of cants employed in the CST, will increase the probability that the maximum will occur at
the nearest end point.

12
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To verify the above hypothesis, the normalized covariance between Xj and Xj+n. from Eq. (13a),
was computed experimentally. Figure 7 shows the results for both the rectangular and the Hanning
windows. Clearly, a significant correlation exists between adjacent values of v for the rectangular win-
dow, and for even greater separation of v values in the case of the Hanning window. This further vern r--
fies that the use of other than the rectangular window is disadvantageous in the case of the CST. Com-
puting the mean value and standard deviation of the CST, using a sequence of cant values separated 4
or greater apart, resulted in values that approached the theoretical curve shown in Fig. 6.

1.0 I

0.9\ 
0.9 .41 0 RECTANGULAR WINDOW

0.8 o HANNING WINDOW

O.7 

AX 0f.4 -

O l 2 3 4 5 6 7 8 9 10
n v

Fig. 7 - Normalized covariance between cant values as a
function of the cant separation Av for rectangular and
Hanning windows.

As a consequence of the covariance between neighboring values of the cant variable, the probabil-
ity for the interior values of cant (exclusive of the end points) is somewhat less than the inverse of the
total number of cants employed in the CST. From the standpoint of the probability distribution of the
interior cant values, the effect of the cant dependence on its near neighbors is reflected as an effective
increase in the number of cants employed. That is, if the total number of contiguous cants employed
in the CST is n, the probability of the interior cants is such that they perceive n +a independent
values. And the probability of the interior points is 1/(n+a). To determine a suitable value for a, the
distribution of v was experimentally measured for n equal to 5, 11, 21, 31, 41, and 49 for both the
rectangular and the Hanning window. It was determined that using values of a equal to 0.4 for the
rectangular window and 1.4 for the Hanning window, the ratio 1/(n+a) very nearly equaled the experi-
mentally determined values of probability for the interior cant points. The empirical relation is particu-
larly good for n greater than about 10.

CST STATISTICS FOR A SIGNAL IN NOISE

Consider the canted spectral transform of a signal comprised of a linear frequency-modulated
sinusoid and random Gaussian-distributed noise. Let

s, = a sin 17r |2 k +v N I + 'an(16)

where 7yn is a zero-mean Gaussian variable with variance (a2 . Let Xi = Fj (k, v;) be a sample CST
statistic for v = v 1 (j = 1,2,..., n), where k is chosen to include ko within its bin width of + 1/2.
Define j = F, (k, ) such that X, j X for all i, and i is a member of the set (Pi). Of interest will be
the distributions of v as a function of the inband signal-to-noise ratio r and fractional offsets in the
parameters ko and vo.

13
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Experimental Parameters

The desired distributions were measured experimentally by using Eq. (16) in Eq. (3), for both a
rectangular and a Hanning window. The CST parameters were; N = 1024, k = 200, and v = -20,
*--, 0, *--, 20. The signal parameters included: ko = 200 and 200.5, v0 = -0.5, 0, 9.5, and 10; and
inband signal-to-noise ratio r = 20, 10, 6, 3, 0, -3, and -6 dB. Using Gaussian noise statistics, more
than 20,000 samples of the CST statistic were obtained for each set of parameters in measuring the i
distributions. The i; distributions for Gaussian noise only were determined earlier.

Distributions of the Peak Cant i

As expected, the distributions of i are independent of the parameter o0 as long as v0 is an interior
cant within the range of the cants ij, and is not close to an end value. The distributions are dependent
on the offsets of both ko and v0 from their nearest integer values. Figure 8 shows the distributions of i
as a function of the inband signal-to-noise ratio r, for a rectangular window and for fractional offsets of
the parameters ko and v0. The upper left-hand diagram shows the distributions when both ko and v0

are integers. The upper right-hand diagram illustrates the effect of ko being offset by 1/2; that is to the
edge of the k bin. The lower left-hand diagram illustrates the case where v0 is midway between two
integer cants. And the lower right-hand diagram illustrates the case where both ko and vo are offset by
1/2. From the figure, one can readily see that a cant shift of one nearly compensates for the degrada-
tion induced by the signal frequency occurring at the edge of the spectral bin. Further, the degradation
resulting from the signal cant being midway between two integer cant values is partially compensated
when the signal frequency is offset from the bin center. In practice, the values of ko and v0 can be
expected to be uniformly distributed over ± 1/2 from an integer value.

Figure 9 displays the distributions of i as a function of the inband signal-to-noise ratio r, for a
Hanning window and for fractional offsets of the two signal parameters. The rationale of the four
diagrams is identical to that given for the case of the rectangular window. The distributions in the k
bin do not differ greatly from those realized with the rectangular window. The peak values are approxi-
mately the same, although the distributions about the peak values are somewhat broader. This
broadening effect about the peaks can be attributed to the broader bandwidth of the CST for a Hanning
window. As evidenced from Figs. 1 and 2, the i; distributions for values of k remote from ko can be
significantly different for the two window functions.

Cumulative Distributions of the Peak Cant i

The cumulative distribution of the peak cant is defined as the sum of the probabilities at 0 and
about either side of zero on the abscissa scale in the diagrams in Figs. 8 and 9. That is, the cumulative
distribution at a scale value of m is simply the probability at the scale value 0 plus the sum of the
probabilities at both positive and negative scale values up to and including m. Using this definition, the
cumulative distributions of the peak cant for the rectangular window are shown in Fig. 10. The
rationale of the four diagrams is the same as that described for the earlier distributions. In the upper
left-hand diagram, the cumulative distribution for r equal to 20 dB coincides with the vertical ordinate
axis, and consequently is not perceived. It is, however, visible on the remaining three diagrams as
illustrated in the upper right-hand diagrani. As may be seen, the probability rises rapidly at a scale of
one, after which it rises less rapidly with increased values of the abscissa scale. The cumulative distri-
bution for a noise-only signal (r=-oodB) is simply a straight line as expected. These curves, as well as
the earlier distributions represent the results for 41 contiguous values of the cant variable.

The cumulative distributions of the peak cant for the Hanning window are displayed in Fig. 11,
with the same format as employed in Fig. 10. The curves for the Hanning window closely approximate
those for the rectangular window. They generally rise more steeply at an abscissa value of one; after
which they ascend more gradually. This behavior is attributed to the broader peaks of their distribu-
tions.
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Fig. 8 - Distributions of the peak cant i for a ramp-frequency signal in random noise, a rectangular window, and
selected values of inband signal-to-noise ratio r. The upper left-hand diagram illustrates the case when the signal
parameters ko and Po are integers. In the upper right-hand diagram. vo is an integer but ko is an odd multiple of 1/2;
that is, ko is at the bin edge. In the lower left-hand diagram, ko is in the center of the k bin but vo is an odd multiple
of 1/2; that is, vo is midway between two cant values. In the lower right-hand diagram, both ko and vo are odd
multiples of 1/2. The number of contiguous cant values, in all cases, is 41.
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Fig. 9 - Distributions of the peak cant D for a ramp-frequency signal in random noise, a Hanning window, and
selected values of inband signal-to-noise ratio r. The rationale for the four diagrams is the same as described in Fig.
8. The number of contiguous cant values, in all cases, is 41.
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Fig. 10 - Cumulative distributions of the peak cant j for a ramp-frequency signal in random noise, a rectangular
window, and selected values of inband signal-to-noise ratio r. The rationale for the four diagrams is the same as
described in Fig. 8. The number of contiguous cant values, in all cases, is 41. The cumulative distributions are
computed from the data in Fig. 8 by summing the probabilities for the abscissa scale value of 0 and the absolute scale
values about 0 up to the indicated scale value.
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Fig. 11 - Cumulative distributions of the peak cant i~for a ramp-frequency signal in random noise, a Hanning
window, and selected values of inband signal-to-noise ratio r. The rationale for the four diagrams is the same as
described in Fig. 8. The number of contiguous cant values, in all cases, is 41. The cumulative distributions are
computed from the data in Fig. 9 by summing the probabilities for the abscissa scale value of 0 and the absolute scale
values about 0 up to the indicated scale value.
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It is well to remember that all of the distributions shown in Figs. 8 through 11 are truly discrete
values and not continuous. Straight lines between the discrete values of probability have been drawn
for convenience in displaying the results.

SUMMARY AND CONCLUSIONS

The conventional sectionalized Fourier transform (SFT) accumulates signal energy in narrow
spectral channels or frequency bins that are constant over the integration time of the transform. It has
been shown that by extending the phase kernel of the SFT, signal energy over narrow spectral channels
that vary dynamically over the integration period can be accumulated to achieve optimum detection
sensitivity for a narrowband signal whose instantaneous-frequency dynamics are known. When the
spectral dynamics of the signal are unknown, the parameters of the generalized kernel may be varied to
obtain estimates of the input signal-frequency dynamics. The canted spectral transform (CST), which
employs a quadratic phase kernel (or Fourier-Fresnel kernel), is an initial step toward achieving a gen-
eralized spectral transform.

The statistical properties of the CST reveal that shaded window functions are generally inferior to
the rectangular window (commonly referred to as no window) in discriminating the cant of signals
whose instantaneous frequency varies linearly with time. Although the primary utility of the CST is in
detecting signals with linearly varying frequency characteristics, it also has merit as a conventional spec-
trum analyzer by appropriately exploiting the distribution characteristics of the peak cant variable. The
statistical properties of the CST for both signal and noise provide a basis for determining the perfor-
mance of the transform in practical applications.
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